Uploaded with ImageShack.us

7 de marzo de 2011

Thomas Morgan y el Drosophila melanogaster


Morgan inició sus estudios en ratas y ratones, pero éstos se reproducen tan despacio que no resultaban convenientes para hacer estudios sobre herencia. Buscando un organismo más apropiado, se decidió por Drosophila melanogaster, la mosca de la fruta. Los estudios de Morgan con Drosophila comenzaron en 1907. Inicialmente, su intención era mantener varias generaciones, esperando que apareciera un mutante ocasional.


Morgan persistió, y en abril de 1910, en una de sus botellas apareció un macho con los ojos blancos, en lugar del color normal (rojo). Esto le permitía comenzar a analizar algunas cuestiones clave: ¿cómo se había generado ese macho? ¿qué determina el color de los ojos? Para empezar, Morgan cruzó el macho mutante de ojos blancos (que denominó white, iniciando la tradición de nombrar la mutación con el fenotipo que genera) con una hembra virgen normal, con ojos rojos. En la primera generación (F1), obtuvo una descendencia (machos y hembras) con ojos rojos, lo que sugería que los ojos rojos eran dominantes, y los blancos recesivos. Para probarlo, cruzó los machos y hembras de la F1, y obtuvo una segunda generación (F2) con las proporciones esperadas según las leyes de Mendel para un carácter recesivo: tres moscas de ojos rojos por cada una de ojos blancos. Sin embargo, aunque Morgan esperaba la misma proporción de machos y hembras con los ojos blancos, observó que todas las hembras los tenían rojos, y entre los machos, los había con ojos rojos y con ojos blancos. Lo cual implicaba que el color de los ojos estaba de alguna forma ligado al sexo. Posteriormente aparecieron otras dos mutaciones espontáneas (alas rudimentarias y color del cuerpo amarillo), que también estaban ligadas al sexo. Todo ello sugería que esos tres genes podrían estar en el mismo cromosoma, el cromosoma sexual.

Estudiando los cromosomas de Drosophila al microscopio, Morgan observó que los 4 pares no eran idénticos, y que las hembras tenían dos cromosomas X idénticos, mientras que en los machos el X estaba apareado con un cromosoma Y, con un aspecto diferente y que nunca aparece en las hembras. Por ello, un macho debe recibir su cromosoma X de su madre y el Y de su padre, lo cual explicaba la segregación observada en el color de ojos: si la madre es homozigota (tiene los dos alelos para ese gen iguales) con los ojos rojos, sus hijos machos sólo pueden tener los ojos rojos, aunque su padre tuviera los ojos blancos. Para que aparezcan machos con los ojos blancos, la madre tiene que portar al menos una copia del gen de ojos blancos en uno de sus cromosomas X, y sólo tendrán los ojos blancos los hijos que reciban el X con el gen mutado. Por su parte, para que aparezcan hembras con ojos blancos, ambos progenitores tienen que aportar un cromosoma X con el gen de los ojos blancos, lo que es por tanto un evento menos frecuente. Es decir, a partir de estas observaciones, Morgan dedujo que el gen que codifica para el color de los ojos debe residir en el cromosoma X, lo que proporcionaba la primera correlación entre un carácer específico y un cromosoma concreto.

Morgan razonó que los cromosomas son ensamblajes de genes, puesto que caracteres que se encuentran en un cromosoma determinado tienden a segregar juntos. Sin embargo, Morgan observó que esos caracteres "ligados" en ocasiones se separan. A partir de aquí, Morgan dedujo el concepto de recombinación de cromosomas: postuló que dos cromosomas apareados pueden intercambiar información, e incluso propuso que la frecuencia de recombinación depende de la distancia entre ambos. Cuanto más cerca estén dos genes en un cromosoma, mayor será la probabilidad de que se hereden juntos, y cuanto mayor sea la distancia entre ellos, mayor será la probabilidad de que se separen debido al proceso de entrecruzamiento (crossing-over). En resumen, Morgan sugirió que la intensidad del ligamiento entre dos genes depende de la distancia entre ellos en un cromosoma.

COMENTARIO

Cabe mencionar que este personaje Morgan dio un gran avance y descubrimientos sumamente importantes en cuanto al tema que lo inquietaba acerca de la herencia; primero que nada encontró el espécimen perfecto para observar el tipo de mutaciones, fueron excelente las deducciones a las que llego así como las conclusiones que nos permite crear con base a su trabajo como :

  • que los genes deben residir en los cromosomas
  • que cada gen debe residir en un cromosoma concreto
  • y que el carácter "color de ojos" debe residir en el cromosoma X y estar ausente en el cromosoma Y, siendo el rojo el color dominante.

También algo importante que aporta es el llamado ‘’cross-over’’ que es cuando los genes se ligan o en pocas palabras se juntan y en ese preciso instante intercambian información genética. Al igual muchas conclusiones de este personaje se basaban en las leyes de Mendel que fueron esenciales para dar un paso más a estos descubrimientos.

EQUIPO NO 2

2 comentarios:

  1. me parecio muy interesante como thomas busco la manera de poder trabajar en los genes y utilizo este insecto peculiar. me gusto mucho la historia :)

    ResponderEliminar
  2. No es sólo uan historia samy! , es la forma de ver el desarrollo de la vida mediante la herencia, aunque tienes razón, ¿quien uba a imginarse que todo lo que sabemos ahora se lo debemos a las moscas?

    ResponderEliminar